Collaborative hyperparameter tuning
نویسندگان
چکیده
Hyperparameter learning has traditionally been a manual task because of the limited number of trials. Today’s computing infrastructures allow bigger evaluation budgets, thus opening the way for algorithmic approaches. Recently, surrogate-based optimization was successfully applied to hyperparameter learning for deep belief networks and to WEKA classifiers. The methods combined brute force computational power with model building about the behavior of the error function in the hyperparameter space, and they could significantly improve on manual hyperparameter tuning. What may make experienced practitioners even better at hyperparameter optimization is their ability to generalize across similar learning problems. In this paper, we propose a generic method to incorporate knowledge from previous experiments when simultaneously tuning a learning algorithm on new problems at hand. To this end, we combine surrogate-based ranking and optimization techniques for surrogate-based collaborative tuning (SCoT). We demonstrate SCoT in two experiments where it outperforms standard tuning techniques and single-problem surrogate-based optimization. Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28. Copyright 2013 by the author(s).
منابع مشابه
Massively Parallel Hyperparameter Tuning
Modern machine learning models are characterized by large hyperparameter search spaces and prohibitively expensive training costs. For such models, we cannot afford to train candidate models sequentially and wait months before finding a suitable hyperparameter configuration. Hence, we introduce the large-scale regime for parallel hyperparameter tuning, where we need to evaluate orders of magnit...
متن کاملYellowFin and the Art of Momentum Tuning
Adaptive Optimization Hyperparameter tuning is a big cost of deep learning. Momentum: a key hyperparameter to SGD and variants. Adaptive methods, e.g. Adam1, don’t tune momentum. YellowFin optimizer • Based on the robustness properties of momentum. • Auto-tuning of momentum and learning rate in SGD. • Closed-loop momentum control for async. training. Experiments ResNet and LSTM YellowFin runs w...
متن کاملSupplementary material for Collaborative hyperparameter tuning
In Section 4 of the main paper, we present results on two benchmarks in terms of average ranking, since classification datasets may not be commensurable in terms of raw validation error. For the sake of completeness, we present here results in terms of average meta-test error. Meta-test error is defined slightly differently in our two experiments. We also present a PCA of our data in the MLP ex...
متن کاملCombination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep Learning
Deep learning has achieved impressive results on many problems. However, it requires high degree of expertise or a lot of experience to tune well the hyperparameters, and such manual tuning process is likely to be biased. Moreover, it is not practical to try out as many different hyperparameter configurations in deep learning as in other machine learning scenarios, because evaluating each singl...
متن کاملHyperparameter tuning in Python using Optunity
We present Optunity, a Python library which bundles various strategies to solve hyperparameter tuning problems. The library provides general purpose algorithms, ranging from undirected search methods to adaptive methods based on refinement strategies, heuristics and evolutionary computing. Optunity aspires to become a Swiss army knife to solve tuning problems of any nature. Its design focuses o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013